LEVEL

1 & OUTPUT

L:mU

LI
\\\ \\\ \ \\\\\E\\\\\\\\\\

NN
ARARRRRRRRRRRRN
\ \\

W\

SN §§s§

N
N\
\\\\\\\ NN

Introduction

Agenda
The Business of Fuzzing
Fuzzing Technology
Architecting a Framework
Bennu Concept Tool

Fuzzing As We Know It

Fuzzing is a method of software testing

A high volume of exceptional data is sent to
various interfaces of a target to locate faulty
program logic

Simple in concept, complex in practice
Hundreds of fuzzers have been written

Fuzzing has held up in practical testing
Many thousands of bugs have been identified

From a Business

Perspective

Identifying flaws in software FovZste EScarg i ésfapsitblerfor
is critical to the reliability and 70% of the bugs Microsoft
security of our information patched in 2006

systems

Fuzzers are responsible for

Security critical bugs are very the majority of the “month

expensive to fix in deployed aillh et

products Fuzzers are responsible for
the IFRAME bug, the

Fuzzers produce repeatable .printer bug, etc

results useful for regression

testing

Fuzz testing is part of the SDL
best practices

Comparing

Methodologies

Manual Data Flow Analysis I b s R st
Can be performed on any form of code ‘ il it
Produces an undefined number of bugs FOO STRUCT foo;

Manual efforts are not repeatable or scalable -
foo.val

i imi : = strd 1]1);
Very expensive and limited source of engineers i A ztrtl:ﬁg?gg\,’\[/a{;;
| - " vuln(&foo) ;
Static Data Flow Analysis | vuln(&foo)
Can target classes of bugs |
Automated and repeatable \EOld vuln (struct *foo)

High false positive rate char buf[STATIC SIZE];

Lacking effective algorithms .
strncpy(buf, foo->val, foo-

>s2);
Dynamic Data Flow Analysis

Can target classes of bugs

Automated and repeatable

Solves some problems with static analysis
Lacking effective algorithms*

}

Fuzzing Technology

Initial Public Offering

Barton Miller, et al “An Empirical Study of the Reliability of
UNIX Utilities”, 1990

Introduced “fuzz”, the first
dumb fuzzer
“Our approach is not a substitute for a formal

Fuzzed with unstructured, rar verification or testing procedures, but rather an
inexpensive mechanism to identify bugs and

Ta rgeted command line argui increase overall system reliability.”

utilities in 7 UNIX varieties

Results: 25% - 33% of the utilities tested crashed,

depending on the version of UNIX

Initial Public Offering

Miller tried again in 1995 with improvements
X Windows clients
Network ports
Memory exhaustion simulation

Crashed as many as 40% of the console utilities and 25% X windows clients

None of the network facing code faulted

“Our 1995 study surprised us ... the continued prevalence of
bugs in the basic UNIX utilities seems a bit disturbing. The
simplicity of performing random testing and its demonstrated
effectiveness would seem to be irresistible to corporate testing
groups.”

Valuable Input

Miller, inspired by the storm, used
random input data

Mutation based input performs
transformations on existing protocol
data

Static lists of values are used to target
common implementation defects and
known classes of bugs

Smarter Fuzzing

Fuzzing interfaces with unstructured
inputs will yield limited results

Structured inputs allow for more
effective traversal of program states

This Is where the art of fuzzing
begins

You be the Smart, I'll be

the Fuzz

SPIKE, Dave Aitel, 2002

C language API for data generation and rapid
network client development

Structured data dynamically defined as blocks
Relation model for size fields

Peach Fuzzer Framework, Michael Eddington, 2004
Object oriented python API

Improved block based analysis with an
abstracted fuzzing model

You be the Smart, I'll be

the Fuzz

Peach Fuzzer Components
Generators
Primitive or complex block data generators

Transformers

Static encoders or decoders associated with a
generator

Protocols
State logic is implemented using generators

Publishers
Provide a transport for the target protocol

Meanwhile in Academia

PROTOS, 2002

Functional fuzzing using behavior

models - .
Master Specification

BNF notation utilized to
describe interaction models
and syntax models

Configuration

Performs operations on the
master specification to derive
a Mini-Simulation model

Communication Rules

Connect the model to
execution environment

PROTOS Mini-Simulation Concept

Functional testing

Stub implementation

Real-World Real World [
H P.I]DdE| [\'10d6| H i
// T i
Master \\
) [=g i1, .
\ Specification
. - Configuration
/ Operation % y Rue
Library / L Library
— ____.// \x__ _______,//
B Rea-World Real-World ;
E3-Ed s
i | > Model |9 Model |
| . | |
Model |t : Simulation |
| Traffic analysis
P
| ¥ Conversion !
B Real World .

RealWorld [l
I

“A Functional Method for Assessing Protocol Implementation Security”,

Rauli Kaksonen

Meanwhile in Academia

Entity Modeling
Describes internal behavior of an entity

Standards
Specification and Description Language (SDL)
Unified Modeling Language (UML)

Interaction Modeling
Describes behavior between two entities
Standards
Unified Modeling Language (UML)
Tree and Tabular Combined Notation (TTCN)
Message Sequence Chart (MSC)

Syntax Modeling
Describes the structure of data exchanged by entities

Standards
Abstract Syntax Notation One (ASN.1)
Extensible Markup Language (XML)

Behavior Modeling

Backus-Naur Form (BNF)

Flexible context-free grammar

extension to regular
expressions

Lacking standard notation

Simulation Grammar

Attribute grammar using
modified BNF notation

Tree-based Data Productions

Tags represent callbacks
as input triggers

PROTOS Mini-Simulation Behavior Grammar (TFT|

<transfer> = <read-transfer> |<write-transfer>:

read-tranafer>» = !up<BRO> <reads>

<Wwrite-transfer> = !'up<WBQ> <writesa>

<reads> = {!down<BLOCE>»> 'up<aCE>} !'down<LAST-BLOCE>» !'up<ACE>

<wWrites> = ldown<ACE> {'up<BLCOCE> !down<ACE>} 'up<LAST-BLOCEK:> !down<ACE>

PROTOS Mini-Simulation Behavior Tree (TFTP)

<read-transfer>

such

<r;5d 5> | | lup - _| o | <Writess |
'down | |'up | | !dowﬂ_r_i[- | lup | -|---!_Eown |
[<LAST-BLOCK>| | <ACK> | [<AcK> | [<LAST-BLOCK>| | <ACK> |
| 'down || up | | !ub | | 'down |

] |
FBLGCKﬁ |cncx>| FELDCKﬂ |<ACK:|

Syntax Modeling

PROTOS Mini-Simulation Syntax Grammar

Syntax Grammar
Also uses modified BNF
Tree-based Type Productions

Evaluation

Transforms input grammar to
output grammar

Engine traverses input tree,
executing rules on subtrees

Semantic Rules evaluate data

Communication Rules
implement 1/0

(TFTP)

<BRQ> ::= (0200 Ox0l) <FILE-HAME> <MODE>:

<WRQ> ::= (0x00 Ox02) <FILE-NAME> <MODE>

Subsequent PDU=s

<BLOCK> :i= (0x00 0x03) <BLOCE-NUMBER> 351Z x <OCIEI>

<LAST-BLOCE> ::= (0x00 0x03) «<BLOCE-NUMBER> 0..5311 { <OCTET> }

<ACK> ::= (0x00 Oxld4) <BLOCE-NUMBER:

<ERROR> ::= (0x00 0x05) <ERROR-CCDE> <ERRCR-MESSAGE:>

Miscellanscus productions

<MODE> :i= "gctet™ 0x00 |"netascii"™ 0x00

<FILE-NAME> ::= | <CHARACTER> } 0Oxd0

<BLOCKE-NUMBER> ::= «<OCTET> <OCTET:>

1

<ERROR-CODE> ::= <QCTET> «<OCTET>
<ERRCOR-ME3SS4GE> ::= | <CHARRCTER> } 0Ox0O0
<CHARRACTER> ::= Om01l - 0Ox7L

<OCTET> ::= O0x00 - 0xIf

State Traversal

PROTOS Mini-Simulation Path Representation

Path Finding <transfer> | - root
Paths are used to access
elements of the grammar

Masks can be used as an
optimized path representation

1down g 1
<LAST-BLOCK ; ACH |: down

| down || !up

|-::E~LDCH::-| | <ACK> |

<transfer>.0.<read transfer>.1l.<reads>.1l.'!'down.<LAST-BLOCK>

Dynamic Whiteboxing

Scalable, Automated, Graph Executution
(SAGE)

“Avtomhatethid/bfibebaxdEuzz Testing”, Void toplchar inputi4])

zoggsion is stored for analysis { intdhelit)

if (input[0] == ‘b’) cnt++;

Symbolic execution gathers %]‘: SR i O B

input constraints from il e e R

" if (input[3] == ‘!’) cnt++;
conditional statements if (cnt >= 3) abort();

Solution given by known-good
input data is negated and

solved again / P

Generational vs Depth-First
Search (DFS) algorithms p \ , ‘.) . /\

r 1r 1 F 1 0F i or 1 F ior 1 1
] 1 1 201 1 2 i1 2 3 1 i3 4
zood zoo! podd pod! zaed zao! padd gad! bood boo! bodd bod! bapd bao! badd bad!

Abstraction
Existing behavior model research is not being utilized

Automation
Current technology not fit for production use
Manual processes introduce inconsistent results

Unification
Commonalities in desired functionality have not been
assessed

Lack of a common platform prevents useful integration
of existing research tools

Architecting a Fuzzing
Framework

Fuzzer Engines

Fuzzer Engines can be classified by features:

Input Generation
Random or Mutation or Static

Data Model
Unstructured or Structured

Behavior Model
Stateless or Stateful

The desired platform should support the
creation of both simple and complex fuzzers

A Note About Input

Generation

Reproducibility is crucial

Multiple passes of data generation is ideal
to target known classes of bugs first

Fuzzers should be able to run for an infinite
time but cover the critical space quickly

Extended model for generation sequencing
would be ideal

Fuzzer Development
Phases

Target Profiling

Manual Analysis
Protocol Specifications

Static Analysis
Type and Symbolic Debug information
Execution Flow Graphs
Data Flow Graphs

Dynamic Instrumentation
Interface discovery
Indirect execution and data flow

Sample input data
File harvesting
Traffic Analysis

Data Modeling

Notation for behavior modeling should be abstract
enough to represent both data and behavior

ASN.1 is cumbersome and not human readable,
and cannot model behavior.

PROTOS’s modified BNF grammar looks highly
capable

XML serialization is widely supported making it a
good option

Behavior Modeling

PROTOS interaction model is robust
and useful

New research is on-going in using
XML to represent state models

“XML Graphs in Program Analysis”,
Anders Mgller, et al

GXL Schema

Testing and Analysis

Target Instrumentation
Debugger Engine

Logging
Callbacks and Exception Handling

Result Analysis
Analysis using standard debugqging Tools
Visualization for manual analysis

Bennu:
A Concept

Bennu Goals

State of the Art

ldentify and use the best research concepts available
for fuzz testing

Flexible & Reusable

Framework should be able to be used to create any of
the types of fuzzers in common use today

New fuzzers should have access to previous models

Intelligent
Use profiling information when present
Do not require any special information to execute

Bennu Goals

Approachable

Users should not need to write much code or
understand how internal models work

Customizable

Target Profiling and Testing Analysis should
be pluggable

Scalable
Distributed testing should be possible

Assisted Target Profiling

Run-time compiled Target
Analyzers written in C# perform
analysis functions with the static

F _LocaleUpdate::localeinfo
F| _LocaleUpdate::ptd

F| _LocaleUpdate::updated
M _

Mame Size | =
. . . =@ filedemo.exe
ﬁtatllfc‘: ana.|¥<S|S englne powered +-f]] threadlocaleinfostrud
y Phoenix i
+-F lcony L
SymbO|S w1 _lc_time_data]
+-f]| tagLC_ID
Types +-f]| threadlocaleinfostruct#thread|ocaleinfostuc
Imports +- FI threadmbainfostrud
P —-f1| localeinfo_strud
Control Flow F| localeinfo_struct::lodnfo
F |ocaleinfo_struct::mbcinfo
Data Flow +-fT] <UnNamedTypex-00000033
-] <UnNamedTypex-00000068
0[] _SYSTEMTIME
))) 27| _TIME_ZONE_INFORMATION
DynamIC anaIyS|S eng|ne +-f]| transitiondate
: + T tm
pOW.ered by MICI‘OSOft Debug T <CrtImplementationDetails =::NativeDll
Engine (dbgeng.dll) #-]| _tiddata
+-]| setloc_strud
+ T _Idiv_t
+-]| _is_ctype_compatible
s
+
+

LocaleUpdate::_LocaleUpdate

and dynamic engines B this
B param1
=[] _GUID -

Assisted Target Profiling

Static analysis engine powered Analyzer Modules
. DumbFuzz
by PhoenIX* File Anahyzer
Traffic Anakyzer
Symbols
Types File Analyzer.cs* =
Im PO rts “if Bennufnalyzer
Control Flow public class Bennulnalyzer
Data Flow k

public static woid Main()

Filefnalyzer £ = new Filefnalyzer():
Dynamic analysis engine Coonemhe
powered by Microsoft Debug

Engine (dbgeng.dll)

return;

public partial class Filefnalyzer : Form

public FilefAnalyzer/()

Run-time compiled Target _
Analyzers written in C# perform InitializeComponent ()

ana|y5|5 funCtlonS Wlth the Statlc Template template = Bennmu.Project.ActiveTemplate:;
and dynam|c engines ElementList.Items.Add (tcemplate) ;

Assisted Data Modeling

Mame Size |«
T _XCPT_ACTION
XML Data Model o
Structured template E ~IMAGENT_HEAD| Add Target
o IMAGE_NT_HEADI
- M Remove Target
definitions ' _IMAGE_NT_HEADI .
e ; +-] _IMAGE_FILE HEADER Import Type
ype speci cation
. . +-]| _IMAGE_OPTIONAL HERDER
Extended relationship model #-[]| _IMAGE_DATA_DIRECTORY
#-f§| _IMAGE_SECTION_HEADER
+-§] <UnNamedType>-00000164 E
#-f§| HINSTANCE__
. . +-§] _IMAGE_DOS_HEADER
Developed In lcooperatlon - 4] <UnNamedType>-000001C2
with Mike Eddington, 1) rtermsgs
#-]] _OVERLAPPED
Supported by PeaCh 20 o ":' _FLOATING_SAVE_AREA
-] _CONTEXT
+-§| _EXCEPTION_RECORD
#-[]] _OSVERSIONINFOA
+-§| _EXCEPTION_POINTERS
+-§] _cpinfo
+-§] tagLC_STRINGS
+-]| _FILETIME %
4 11} [2

Assisted Data Modeling

XML Data Model
Structured template
definitions
Type specification
Extended relationship model

Developed in cooperation
with Mike Eddington,
supported by Peach 2.0

Mame Size
-] _XCPT_ACTION
T
a
F| _IMAGE_NT_HEADI Add Target
F _IMAGE_NT_HEADI Remove Target
F _IMAGE_NT_HEADI
Mame Size Offeet Value -
S i i
2 IMAGE NT HEADERS i i
Alignment 0 0
+- Signature 32 0
5. _IMAGE_FILE_HEADER 0 32 |
Alignment 0 32 3
+-- Machine 16 32
4~ NumberOfSections 16 48
1 TimeDateStamp 32 64
4 PointerToSymbolTable 32 a6
4 NumberOfSymbols 32 128
4 Size0fOptionalHeader 16 160
+)-- Characteristics 16 176
5. _IMAGE_OPTIONAL_HEADER 0 32
Alignment 0 32
+-- Magic 16 32
4 MajorLinkerVersion 8 48
+-- MinorLinkerVersion 8 56
4 Size0fCode 32 64
+-- SizeOflnitializedData 32 a6
4 SizeQfUninitializedD ata 32 128
+)-- AddressOfEntryPoint 32 16 il

- -

4 I

m

o
=
[
T
=
>
L &
A=
>
C
£
o
m
T
0
)
L
")
)
=

L]
(=]

[
==

[|
[]
[

[]

[
[
[|
[R
[]
[]
[
[
[
[]

oo
[==

[]
[]

[]

[R
L T e |

[R e R
[=

[R R e
[=
[B e

L T e |
[R
[=
[= :]
[
[R

[
™ m o

[R R e
i T e B e
[
(==
[
[R

L T e |
M m o
[
[R
[=
==
i T e B e
i T e B e
[=
[L L e

e e T e e
[B R
0w
|
e R T e e
e R T e e
e R T e]
L T e |
(=]

o

o=

(=

=]

[=]

=

=]

=
o

[}
[

o=

o

[

[
o=

=]
=]

[l
[

o=

o
(=1

=]
=]

[o]
=]

1]
=]

[l
[l

(=1

=]
=]

(]

e}
[

(=1

o

=]
=]

[l

(=1

[

=]

L

[l
(=1

L]
=]

L

(=]

(=1
(=1
[l
(=1
(=1

| Execute |

.Peach

aa
fi=)
o
[F=]
[F=]
T o

o

I

terations
void BennuFuzzenPeach peach, PeachGroup aroup, PeachGenerator generator)

Seed

Template
Fuzzers

XML Model

Evaluations use callbacks
State model abstraction

’

UNDER DEVELOPMENT

currently being developed
Developed in cooperation

with Mike Eddington
supported by Peach 2.0

Automated Testing and

Analvysis

Tests executed by Peach
2.0 running on an
embedded Python engine

Exception handling and
post-run analysis using the
Dynamic Analysis Engine

Quickly inspect minidump
contents

View visited code blocks

Register callbacks for
automated post-run
analysis

#%% ERROR: Symbol file could not be found.

21
a2
a3
a4
a5
26
a7
23
ea
2d
ab
ec
ad
Be

18
11
12
13

ntdll!
ntdll1!
ntdll!
ntdll1!
ntdll!
ntdll1!

shell132

RtladdressInsectionTable(struct
RtlpImageDi b

RtlpImag
RtlImageDirectoryEntry
LdrpsearchRescurceSection_U(veld * DllHandle =
LdrFindResgurceDirectory _U{void * DllHandle =
kernel32!
kernelz2!EnumRescurceNamesExw(struct HINSTANCE_ * hModule =
user32!PrivateExtractIconsk{wchar_t * szFileName =
shell32!
shellzz2!
shell3z!
shellz2!
shell3z!
shellz2!
shellzz2!
shell32!
shellzz2!

_GetILIndexcivenPXlcon(struct PXICONPARAMS * pip = @x@5c9ecs48, int * plImage =
_GetILIndexFromItem({struct IShellFolder * psf = @w@3eb83c3, struct _ITEMID CHILD * pidl -

m

Defaulted teo export symbols for thumbcache.dll -

* NtHeaders = ex@l7feebe, vold * Base = ex
rectoryEntryT = @x@17fesed, unsigned char MappedAsImage = @x8g
irectoryEntryToDataEx(veld * Base = exel7feeel, unsigned char MappedAsImage = @xed
Tobata(void * Base = @x@l7fe2@l, unsigned char MappedAasImage = eéx@l "'
gx@l7feasl, unsigned leong * ResourceIdPath =
gxelrfeeel, unsigned long * ResourceIldPath = @
axel7feasl)+ex19
gxel7fesel, wchar_t * lpType = @xeese
@xescodces "D:‘\code\peach\output'\pe32\pe32-19.5
SHPrivateextractIconsW({wchar_t * szfFileName = exescodecd "D:'\code\peach‘output'pe32ipe3z-1
SHDefExtractIconw(wchar_t #* pszIconFile = @x@5c9e324 "D:‘\code\peach\output'pe32'pe32-19.sc
CFSFelderExtractIcon: :_ExtractW(wchar_t * pszFile = @x@5c9e324 "D:‘code\peachhoutputipe3ay
CExtractIconBase::Extract({wchar_t #* pszFile = @x@5c9e324 "D:‘code‘\peach\output\pe3a2\pe32-1
IExtractIcon_Extract{struct IExtractIconW * pel = @w@3e3b2d4, wchar_t * pszFile = @x85c9e3
gxasCco9ennd)-

| g

IsMUIzedFile(struct HINSTARCE_ * hModule =

SHMapPIDLToSystemImageListIndex(struct IshellFolder * psf = ex@3ebe3cd, struct _ITEMID CHI
CShellItem:: GetIcon(struct tagSIZE size = struct tagsIZE, int fCachedonly = @, struct HBI
rShellTtem: :GetSharedRitmani strurt TAeSTFF si7e = struct TarST7F. int flars = 8. struct 75

1) 2

m

Conclusions

Fuzzing is an increasingly powerful approach to
software security

Available support libraries are sufficiently robust
to build complex analysis frameworks

Academic research has revealed technology
possibilities that have yet to be fully realized

Automating the abstraction of behavior models
provide an ideal area of research for security
engineers

	Slide 1
	Welcome
	Fuzzing As We Know It
	From a Business Perspective
	Comparing Methodologies
	Slide 6
	Initial Public Offering
	Initial Public Offering
	Valuable Input
	Smarter Fuzzing
	You be the Smart, I’ll be the Fuzz
	You be the Smart, I’ll be the Fuzz
	Meanwhile in Academia
	Meanwhile in Academia
	Behavior Modeling
	Syntax Modeling
	State Traversal
	Dynamic Whiteboxing
	What’s Missing?
	Slide 20
	Fuzzer Engines
	A Note About Input Generation
	Fuzzer Development Phases
	Target Profiling
	Data Modeling
	Behavior Modeling
	Testing and Analysis
	Slide 28
	Bennu Goals
	Bennu Goals
	Assisted Target Profiling
	Assisted Target Profiling
	Assisted Data Modeling
	Assisted Data Modeling
	Assisted Behavior Modeling
	Automated Testing and Analysis
	Conclusions

